Acta Crystallographica Section E Structure Reports Online

ISSN 1600-5368

Bis(diisopropylammonium) naphthalene-1,5-disulfonate

Yu Jin

Ordered Matter Science Research Center, Southeast University, Nanjing 211189, People's Republic of China Correspondence e-mail: jinyunihao@yahoo.cn

Received 9 September 2011; accepted 20 October 2011

Key indicators: single-crystal X-ray study; T = 293 K; mean σ (C–C) = 0.003 Å; R factor = 0.046; wR factor = 0.129; data-to-parameter ratio = 19.4.

In the title compound, $2C_6H_{16}N^+ \cdot C_{10}H_6O_6S_2^{2-}$, the cations and anions are associated *via* $N-H \cdot \cdot \cdot O$ and $C-H \cdot \cdot \cdot O$ hydrogen-bonding interactions.

Related literature

For general background on ferroelectric metal-organic frameworks, see: Fu *et al.* (2009); Wu *et al.* (2011); Ye *et al.* (2006); Zhang *et al.* (2008, 2010).

Experimental

Crystal data $2C_6H_{16}N^+ \cdot C_{10}H_6O_6S_2^{2^-}$ $M_r = 490.66$ Triclinic, $P\overline{1}$ a = 7.9518 (16) Å b = 9.1215 (18) Å c = 9.4319 (19) Å $\alpha = 74.33$ (3)° $\beta = 88.60$ (3)°

 $\gamma = 74.74 (3)^{\circ}$ $V = 634.7 (2) \text{ Å}^3$ Z = 1Mo K\alpha radiation $\mu = 0.25 \text{ mm}^{-1}$ T = 293 K $0.3 \times 0.3 \times 0.2 \text{ mm}$

Data collection

Rigaku Mercury CCD diffractometer Absorption correction: multi-scan (*CrystalClear*; Rigaku, 2005) $T_{\min} = 0.489, T_{\max} = 1.000$

Refinement

$R[F^2 > 2\sigma(F^2)] = 0.046$	150 parameters
$wR(F^2) = 0.129$	H-atom parameters constrained
S = 1.12	$\Delta \rho_{\rm max} = 0.50 \ {\rm e} \ {\rm \AA}^{-3}$
2904 reflections	$\Delta \rho_{\rm min} = -0.45 \ {\rm e} \ {\rm \AA}^{-3}$

6562 measured reflections

 $R_{\rm int} = 0.038$

2904 independent reflections

2621 reflections with $I > 2\sigma(I)$

Table 1

Hydrogen-bond ge	ometry (A, ^o	')
------------------	-------------------------	----

$D - H \cdots A$	D-H	$H \cdot \cdot \cdot A$	$D \cdots A$	$D - \mathbf{H} \cdot \cdot \cdot A$
$N1 - H1C \cdots O1^{i}$	0.90	2.03	2.887 (2)	159
$N1 - H1D \cdots O3^{ii}$	0.90	2.02	2.916 (2)	174
С9−Н9А…О3	0.96	2.58	3.480 (3)	156
$C6-H6A\cdots O3^{ii}$	0.96	2.58	3.351 (3)	138
C11−H11C···O1 ⁱⁱ	0.96	2.61	3.439 (4)	144
$C11 - H11B \cdots O2^{i}$	0.96	2.47	3.382 (3)	158

Symmetry codes: (i) x, y, z - 1; (ii) -x + 1, -y, -z + 1.

Data collection: *CrystalClear* (Rigaku, 2005); cell refinement: *CrystalClear*; data reduction: *CrystalClear*; program(s) used to solve structure: *SHELXS97* (Sheldrick, 2008); program(s) used to refine structure: *SHELXL97* (Sheldrick, 2008); molecular graphics: *SHELXTL* (Sheldrick, 2008); software used to prepare material for publication: *SHELXL97*.

Yu Jin thanks Ordered Matter Science Research Center, Southeast University for its excellent experimental facilities.

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: MW2025).

References

- Fu, D.-W., Ge, J.-Z., Dai, J., Ye, H.-Y. & Qu, Z.-R. (2009). Inorg. Chem. Commun. 12, 994–997.
- Rigaku (2005). CrystalClear. Rigaku Corporation, Tokyo, Japan.
- Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.
- Wu, D.-H., Ge, J.-Z., Cai, H.-L., Zhang, W. & Xiong, R.-G. (2011). CrystEngComm, 13, 319–324.
- Ye, Q., Song, Y.-M., Wang, G.-X., Chen, K. & Fu, D.-W. (2006). J. Am. Chem. Soc. 128, 6554–6555.
- Zhang, W., Xiong, R.-G. & Huang, S.-P. D. (2008). J. Am. Chem. Soc. 130, 10468–10469.
- Zhang, W., Ye, H.-Y., Cai, H.-L., Ge, J.-Z. & Xiong, R.-G. (2010). J. Am. Chem. Soc. 132, 7300–7302.

supplementary materials

Acta Cryst. (2011). E67, o3048 [doi:10.1107/S1600536811043492]

Bis(diisopropylammonium) naphthalene-1,5-disulfonate

Y. Jin

Comment

Currently, simple molecular-ionic compounds containing organic cations and anions are of considerable interest owing to the tunability of their structural features and their potential to show ferroelectric properties. There exists a series of compounds in which the components can be arranged in a disordered fashion at a relative high temperature and in an ordered fashion at a relative low temperature. (Fu *et al.*, 2009; Zhang *et al.*, 2010; Zhang *et al.*, 2008; Ye *et al.*, 2006). The transition from the disordered arrangement to the ordered one leads to sharp change in the physical properties of the compound. As part of our search for simple ferroelectric compounds we have investigated the title compound and report its room temperature structure.

The centrosymmetric anion and one cation are shown in Fig. 1 with the hydrogen bonds listed in Table 1. These interactions tie the cations and anions together in sheets approximately parallel to $\{100\}$ with zig-zag rows of cations lying between rows of anions (Fig. 2). There are only van der Waals interactions between layers.

Experimental

1,5-naphthalenedisulfonic acid (10 mmol, 2.88 g) was dissolved in 15 ml of distilled water and was stirred for 5 minutes after which diisopropylamine (1.5 ml) was added with stirring. The solution was filtered and left to stand undisturbed whereupon colorless block crystals suitable for X-ray diffraction were obtained in about 68% yield after two days. These were filtered off and washed with distilled water.

Refinement

H atoms bound to carbon and nitrogen were placed at idealized positions [C—H = 0.93–0.96 Å and N—H = 0.90 Å] and allowed to ride on their parent atoms with U_{iso} fixed at 1.2 $U_{eq}(C,N)$.

Figures

Fig. 1. Perspective view of one cation and the anion for (I).Displacement ellipsoids drawn at the 30% probability level.

Fig. 2. Packing of (I) viewed down the *a* axis. The N—H…O and C—H…O interactions are shown, respectively as dashed and dotted lines.

Bis(diisopropylammonium) naphthalene-1,5-disulfonate

Crystal data

$2C_6H_{16}N^+ \cdot C_{10}H_6O_6S_2^{2-}$	Z = 1
$M_r = 490.66$	F(000) = 264
Triclinic, <i>P</i> T	$D_{\rm x} = 1.284 {\rm ~Mg} {\rm ~m}^{-3}$
Hall symbol: -P 1	Mo K α radiation, $\lambda = 0.71073$ Å
<i>a</i> = 7.9518 (16) Å	Cell parameters from 3450 reflections
b = 9.1215 (18) Å	$\theta = 3.1 - 27.6^{\circ}$
c = 9.4319 (19) Å	$\mu = 0.25 \text{ mm}^{-1}$
$\alpha = 74.33 \ (3)^{\circ}$	T = 293 K
$\beta = 88.60 \ (3)^{\circ}$	Block, colorless
$\gamma = 74.74 \ (3)^{\circ}$	$0.3 \times 0.3 \times 0.2 \text{ mm}$
$V = 634.7 (2) \text{ Å}^3$	

Data collection

2904 independent reflections
2621 reflections with $I > 2\sigma(I)$
$R_{\rm int} = 0.038$
$\theta_{\text{max}} = 27.5^{\circ}, \ \theta_{\text{min}} = 3.1^{\circ}$
$h = -10 \rightarrow 10$
$k = -11 \rightarrow 11$
$l = -12 \rightarrow 12$

Refinement

Refinement on F^2	Secondary atom site location: difference Fourier map
Least-squares matrix: full	Hydrogen site location: inferred from neighbouring sites
$R[F^2 > 2\sigma(F^2)] = 0.046$	H-atom parameters constrained
$wR(F^2) = 0.129$	$w = 1/[\sigma^2(F_o^2) + (0.0558P)^2 + 0.2055P]$ where $P = (F_o^2 + 2F_c^2)/3$
S = 1.12	$(\Delta/\sigma)_{\rm max} < 0.001$
2904 reflections	$\Delta \rho_{max} = 0.50 \text{ e} \text{ Å}^{-3}$
150 parameters	$\Delta \rho_{\rm min} = -0.45 \text{ e } \text{\AA}^{-3}$

0 restraints

Extinction correction: *SHELXL97* (Sheldrick, 2008), Fc^{*}=kFc[1+0.001xFc² λ^3 /sin(20)]^{-1/4}

Primary atom site location: structure-invariant direct methods Extinction coefficient: 0.85 (3)

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F^2 against ALL reflections. The weighted *R*-factor *wR* and goodness of fit *S* are based on F^2 , conventional *R*-factors *R* are based on *F*, with *F* set to zero for negative F^2 . The threshold expression of $F^2 > \sigma(F^2)$ is used only for calculating *R*-factors(gt) *etc.* and is not relevant to the choice of reflections for refinement. *R*-factors based on F^2 are statistically about twice as large as those based on *F*, and *R*- factors based on ALL data will be even larger.

	x	У	Z	$U_{\rm iso}*/U_{\rm eq}$
C1	-0.0351 (2)	0.2895 (2)	0.7281 (2)	0.0369 (4)
H1B	-0.0197	0.2081	0.8148	0.044*
C2	0.1044 (2)	0.34189 (18)	0.66995 (17)	0.0283 (3)
C3	0.08495 (18)	0.46559 (17)	0.53574 (17)	0.0259 (3)
C4	0.2268 (2)	0.5223 (2)	0.47013 (19)	0.0337 (4)
H4A	0.3383	0.4773	0.5148	0.040*
C5	0.2021 (2)	0.6413 (2)	0.3430 (2)	0.0406 (4)
H5A	0.2965	0.6774	0.3026	0.049*
C6	0.1682 (3)	0.0620 (3)	0.2747 (3)	0.0628 (7)
H6A	0.2490	-0.0343	0.3287	0.094*
H6B	0.1388	0.0527	0.1800	0.094*
H6C	0.0643	0.0818	0.3284	0.094*
C7	0.2506 (2)	0.1971 (2)	0.2543 (2)	0.0429 (4)
H7A	0.2742	0.2097	0.3512	0.052*
C8	0.1320 (3)	0.3506 (3)	0.1613 (3)	0.0607 (6)
H8A	0.1903	0.4329	0.1461	0.091*
H8B	0.0266	0.3784	0.2112	0.091*
H8C	0.1040	0.3377	0.0677	0.091*
С9	0.6308 (4)	0.2023 (4)	0.3419 (3)	0.0714 (8)
H9A	0.5432	0.2048	0.4137	0.107*
H9B	0.7008	0.2709	0.3505	0.107*
H9C	0.7036	0.0964	0.3585	0.107*
C10	0.5439 (3)	0.2570 (2)	0.1895 (2)	0.0437 (5)
H10A	0.4767	0.3676	0.1709	0.052*
C11	0.6760 (3)	0.2441 (4)	0.0729 (3)	0.0661 (7)
H11A	0.7547	0.3062	0.0787	0.099*
H11B	0.6168	0.2822	-0.0227	0.099*
H11C	0.7404	0.1356	0.0886	0.099*
N1	0.42071 (17)	0.15825 (17)	0.18060 (16)	0.0335 (3)

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (A^2)

supplementary materials

H1C	0.3967	0.1694	0.0849	0.040*
H1D	0.4761	0.0560	0.2216	0.040*
01	0.28340 (19)	0.14639 (18)	0.90458 (15)	0.0519 (4)
O2	0.3674 (2)	0.38559 (19)	0.79367 (18)	0.0585 (4)
O3	0.42442 (18)	0.17516 (17)	0.67405 (16)	0.0517 (4)
S1	0.31154 (5)	0.25661 (5)	0.76799 (5)	0.0357 (2)

Atomic displacement parameters $(Å^2)$

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
C1	0.0390 (9)	0.0366 (9)	0.0327 (9)	-0.0133 (7)	0.0020 (7)	-0.0025 (7)
C2	0.0264 (7)	0.0285 (7)	0.0287 (8)	-0.0033 (6)	-0.0008 (6)	-0.0096 (6)
C3	0.0231 (7)	0.0279 (7)	0.0276 (7)	-0.0059 (6)	-0.0001 (6)	-0.0101 (6)
C4	0.0227 (7)	0.0399 (9)	0.0384 (9)	-0.0087 (6)	-0.0004 (6)	-0.0101 (7)
C5	0.0328 (9)	0.0468 (10)	0.0426 (10)	-0.0186 (8)	0.0049 (7)	-0.0054 (8)
C6	0.0394 (11)	0.0591 (14)	0.0805 (17)	-0.0143 (10)	0.0068 (11)	-0.0030 (12)
C7	0.0350 (9)	0.0497 (11)	0.0442 (10)	-0.0058 (8)	0.0055 (7)	-0.0187 (8)
C8	0.0441 (12)	0.0442 (11)	0.0883 (18)	0.0052 (9)	0.0023 (11)	-0.0255 (12)
C9	0.0689 (16)	0.118 (2)	0.0499 (13)	-0.0474 (16)	0.0010 (11)	-0.0383 (14)
C10	0.0414 (10)	0.0422 (10)	0.0495 (11)	-0.0152 (8)	-0.0024 (8)	-0.0114 (8)
C11	0.0519 (13)	0.105 (2)	0.0431 (12)	-0.0390 (13)	0.0018 (10)	-0.0054 (12)
N1	0.0291 (7)	0.0354 (7)	0.0345 (7)	-0.0038 (6)	-0.0022 (5)	-0.0115 (6)
01	0.0527 (9)	0.0584 (9)	0.0318 (7)	-0.0073 (7)	-0.0081 (6)	0.0023 (6)
O2	0.0545 (9)	0.0595 (9)	0.0644 (10)	-0.0164 (7)	-0.0242 (7)	-0.0182 (8)
03	0.0412 (8)	0.0515 (8)	0.0456 (8)	0.0119 (6)	0.0027 (6)	-0.0090 (6)
S1	0.0306 (3)	0.0390 (3)	0.0310 (3)	-0.00070 (17)	-0.00660 (16)	-0.00666 (18)

Geometric parameters (Å, °)

C1—C2	1.366 (2)	C8—H8A	0.9600
C1—C5 ⁱ	1.409 (3)	C8—H8B	0.9600
C1—H1B	0.9300	C8—H8C	0.9600
C2—C3	1.430 (2)	C9—C10	1.507 (3)
C2—S1	1.7844 (17)	С9—Н9А	0.9600
C3—C4	1.422 (2)	С9—Н9В	0.9600
C3—C3 ⁱ	1.430 (3)	С9—Н9С	0.9600
C4—C5	1.360 (3)	C10-C11	1.508 (3)
C4—H4A	0.9300	C10—N1	1.513 (2)
C5—C1 ⁱ	1.409 (3)	C10—H10A	0.9800
С5—Н5А	0.9300	C11—H11A	0.9600
C6—C7	1.508 (3)	C11—H11B	0.9600
С6—Н6А	0.9600	C11—H11C	0.9600
С6—Н6В	0.9600	N1—H1C	0.9000
С6—Н6С	0.9600	N1—H1D	0.9000
C7—N1	1.508 (2)	O1—S1	1.4578 (15)
С7—С8	1.517 (3)	O2—S1	1.4401 (16)
C7—H7A	0.9800	O3—S1	1.4521 (15)
C2—C1—C5 ⁱ	120.17 (16)	H8B—C8—H8C	109.5

C2—C1—H1B	119.9	С10—С9—Н9А	109.5
C5 ⁱ —C1—H1B	119.9	С10—С9—Н9В	109.5
C1—C2—C3	121.06 (15)	Н9А—С9—Н9В	109.5
C1—C2—S1	118.57 (13)	С10—С9—Н9С	109.5
C3—C2—S1	120.34 (12)	Н9А—С9—Н9С	109.5
C4—C3—C3 ⁱ	118.72 (18)	Н9В—С9—Н9С	109.5
C4—C3—C2	123.01 (14)	C9—C10—C11	111.56 (19)
C3 ⁱ —C3—C2	118.28 (17)	C9—C10—N1	109.39 (17)
C5—C4—C3	121.05 (15)	C11—C10—N1	109.33 (17)
С5—С4—Н4А	119.5	С9—С10—Н10А	108.8
C3—C4—H4A	119.5	C11—C10—H10A	108.8
C4—C5—C1 ⁱ	120.72 (16)	N1—C10—H10A	108.8
С4—С5—Н5А	119.6	C10-C11-H11A	109.5
C1 ⁱ —C5—H5A	119.6	C10—C11—H11B	109.5
С7—С6—Н6А	109.5	H11A—C11—H11B	109.5
С7—С6—Н6В	109.5	C10-C11-H11C	109.5
H6A—C6—H6B	109.5	H11A—C11—H11C	109.5
С7—С6—Н6С	109.5	H11B-C11-H11C	109.5
Н6А—С6—Н6С	109.5	C7—N1—C10	115.64 (14)
H6B—C6—H6C	109.5	C7—N1—H1C	108.4
N1—C7—C6	108.75 (16)	C10—N1—H1C	108.4
N1—C7—C8	109.60 (17)	C7—N1—H1D	108.4
C6—C7—C8	111.47 (19)	C10—N1—H1D	108.4
N1—C7—H7A	109.0	H1C—N1—H1D	107.4
С6—С7—Н7А	109.0	O2—S1—O3	113.49 (10)
С8—С7—Н7А	109.0	O2—S1—O1	112.42 (10)
С7—С8—Н8А	109.5	O3—S1—O1	111.45 (9)
С7—С8—Н8В	109.5	O2—S1—C2	106.31 (8)
H8A—C8—H8B	109.5	O3—S1—C2	106.05 (8)
С7—С8—Н8С	109.5	O1—S1—C2	106.53 (8)
H8A—C8—H8C	109.5		

Symmetry codes: (i) -x, -y+1, -z+1.

Hydrogen-bond geometry (Å, °)

D—H···A	<i>D</i> —Н	$H \cdots A$	$D \cdots A$	$D\!\!-\!\!\mathrm{H}^{\ldots}\!A$
N1—H1C···O1 ⁱⁱ	0.90	2.03	2.887 (2)	159
N1—H1D····O3 ⁱⁱⁱ	0.90	2.02	2.916 (2)	174
С9—Н9А…ОЗ	0.96	2.58	3.480 (3)	156
C6—H6A···O3 ⁱⁱⁱ	0.96	2.58	3.351 (3)	138
C11—H11C···O1 ⁱⁱⁱ	0.96	2.61	3.439 (4)	144
C11—H11B···O2 ⁱⁱ	0.96	2.47	3.382 (3)	158
Symmetry codes: (ii) $x, y, z-1$; (iii) $-x+1, -y, -z+1$.				

Fig. 1

Fig. 2